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In this paper, a quantum-mechanical model of interacting radiation and nonmetallic matter

is used to study the connection between excitons, plasmons, and polaritons.

An explicit de~

scription of polaritons as mixed particles consisting of photons and matter oscillators is
given, and it is shown that polariton states form a suitable basis for calculations of nonlinear

optical effects in crystals.
the crystal.

INTRODUCTION
Since intense laser-light sources became avail-
able, nonlinear optical effects! such as Brillouin

Plasmon-photon interactions, in addition, are shown to occur in

and Raman scattering, two-photon absorption, and
harmonic generation have been observed, and the
interaction between strong electromagnetic waves
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and condensed media has become a subject of great
interest in solid-state physics.

It is well known in nonlinear optics that the meth-
od of small perturbations, successfully used for
gases by Armstrong, Bloembergen, Ducuing, and
Pershan,?® gives rise to some difficulties when ap-
plied to crystals.® In solids, even the Coulomb in-
teractions between electrons which are responsible
for many-particle excitations, such as excitons and
plasmons, contribute to nonlinear processes. A
breakdown of the method of small perturbations, in
addition, takes place at resonance positions where
the light frequency coincides with the excitation
frequency of the crystal so that this method is
limited to cases far from resonance. In semicon-
ductors with a small energy gap, however, optical
resonances may become important. It must be noted
that within the framework of a perturbation ap-
proach, a discrimination between proper anharmon-
icities and renormalization effects — the latter ones
leading to oscillations with shifted frequencies —
should be made.

To largely avoid the above-mentioned difficulties,
it is advantageous to remember the concept of po-
laritons, introduced by Hopfield,® Fano,® and Pekar,’
and to use polariton states as a suitable basis in
analyzing nonlinear optical phenomena in semicon-
ductors and insulators by means of a perturbation
approach.

In the present paper, the interaction between a
nonmetallic ideal crystal and the radiation field is
studied quantum mechanically. Lattice vibrations
are not taken into account. In Sec. I, the Hamil-
tonian of the total system is written consistently in
the electron-hole-pair representation. In addition,
the Coulomb interactions are considered. Those
parts of the Coulomb interactions which lead to
exciton and plasmon excitations, respectively, are
examined in Sec. II. As is shown in Sec. III, the
complete Hamiltonian can be split into a linear and
a nonlinear part. The linear part containing strong
interactions is responsible for polariton excita-
tions. With the help of a simplified but character-
istic and exactly solvable model, the polariton prob-
lem is discussed in detail. It is worth mentioning
that polaritons, in principle, imply the coupling be-
tween plasmons and transverse photons. In Sec.
1V, the polariton states are shown to be applicable
for the evaluation of nonlinear optical-transition
amplitudes.

I. HAMILTONIAN IN ELECTRON-HOLE-
PAIR REPRESENTATION

We consider a two-band crystal consisting of a
periodic arrangement of N atoms, each one bearing
one valence electron. Spin coordinates are ne-
glected; thus, these N electrons in the ground state
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fill up the valence band, and separated by a finite
gap, there may exist a higher-lying empty conduc-
tion band. If the crystal is coupled to a radiation
field, and we take into account the Coulomb forces
between the electrons, the Hamiltonian of the com-
plete system reads

H:ifd%(‘ﬁ%ﬁz)
87

; / Prut@) [2—}”— (5-§ K)z N V(?)]\If(f)

’ 2
+3 ff dr v W EVE) g YE)VE)
T-1'|
1.1)

V(¥) is the self-consistent one-electron potential,
and the prime at the twofold integral over the elec-
tron coordinates in the last term of (1.1) means
that those parts of the Coulomb interactions which
are already incorporated in V(¥) must be sub-
tracted.® We choose the Coulomb gauge divA = 0,
and expand the vector potential A as follows®

=2 (Zﬂﬁc

= UTF -oat) |, T =i(EF = wgt)
e e ) +tee ¥
volo > 1 (Eq &3 )

(1.2)

where wa=cl§l is the frequency of the free-radia-
tion field, Ea is a unit vector describing the polar-
ization, and vol is the volume of the crystal. The
sum over g includes summation over the directions
of polarization. The photon-creation and photon-
annihilation operators obey the commutation rela-
tions

ltg £k ) = 03,0, [Ep tpl-=[Eh £h1.=0.  (1.3)

The electron wave field ¥(¥) is expanded by Bloch
functions which shall be eigenstates of the self-
consistent one-particle Hamiltonian

V(F)=2gapbg (F) + 20} 9,2(F) . (1.4)

The Bloch functions of wave vector K and band
number u,

a2 ®) =[1/(vol) /2] ¥y 2 (F) (1.5)

are normalized within the total crystal volume and
obey the eigenvalue equation

[B%/2m + VE)]$uz(@) = €, 9,2(F) .

The operators :, ag are creation and annihilation
operators of electrons with wave vector K in the
conduction band (denoted by c), and bi, by are crea-
tion and annihilation operators of holes w1th wave
vector ~k in the valence band (denoted by v).
These Fermi operators fulfill the anticommutation
relations

(1.6)
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1
[aE’ age ]"' = GP'E, [af’ (£ ]+ = [d; ’ a}' ]+ = 0;

i Tt .7
[bﬁ ’ bE’]-I-: 5!’,?? [bfr bi']+ = [bﬁ’ bf']a-: 0.
We insert (1. 2) and (1. 4) into (1.1), and go to the
electron-hole-pair description using the two-par-
ticle operators!?

by =abbh and cpp =by ap . (1.8)

In crystals where the number of excited electrons
is small compared with the total number of elec-
trons, the electron-hole pairs can be treated ap-
proximately as bosons with
[eg » Chrogons )% Spon g Spons o,
(1.9)

[CE;:, Cigrege ee ]_-: [Ci‘lz:, C%n;n:]_ =0.

Because of the Pauli principle, however, the follow-

ing relation must hold:
(cgp "= (clpe)"=0 for n>2. (1.10)

An exact treatment of the electron-hole pairs re-
quires instead of (1.9) the commutation rule

—

T 1
g 30 b qbp~ 2

k",E"

In the electron-hole-pair representation, the com-
mutation rule (1. 9) must now be used instead of

c.b.

—
m
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FIG. 1. The scattering process (1,12). (a) Fermion
representation, (b) boson representation, and c.b. and
v.b. refer to the conduction band and the valence band,
respectively.
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T T
[C{{c, CE«:PM]_= 5;01,'; 5;:::'? - 5;:“';: ager ag

- 6?: "i b;u: bi: . (1. 11)

We suppose that in our crystal model the total num-
ber of electrons is conserved during all excitation
processes of interest here, so that starting with a
crystal having a filled valence band and an empty
conduction band, an equal number of excited elec-
trons and created holes is observed always. The
excited states of the crystal therefore are well
described by electron-hole-pair operators acting
on the ground state. A representation of the Ham-
iltonian by means of creation and annihilation
operators c%;. , Cgir, which is equivalent to the
original fermion Hamiltonian, is desirable now.
To this end, a translation rule for scattering pro-
cesses is needed in going from the fermion to the
electron-hole-pair description. The way to per-
form this procedure is illustrated in Fig. 1, using
an intraband scattering process.out of the Coulomb
interaction term which leads to the following oper-
ator expression:

1 T i
, a%_,,abiu bin (lia&:u bil*abil Aigeree =E'Z,>P" Ct .+ gkre CﬁuCEu g g Cirorip

! > LS SN -, Crm
= CRagie +3 Ciier +E'?;l'” Ci.,;ayn Cyroege g Clereye Cijgee «
(1.12)

I

(1.11). The normal-ordered sum term in (1.12)
provides the same results in the fermion and elec-
tron-hole-pair representation if the equivalent op-
erator series acts on an electron-hole-pair state.
The insertion of electron and hole-density oper-
ators, respectively, is no identity in the fermion
picture, but is only a trick used to find the equi-
valent boson expression. After the density opera-
tors are inserted, we introduce the new pair oper;
ators which group together the one-particle opera-
tors. This procedure holds even if we allow many-
particle pair states.

In doing that, and neglecting umklapp processes
in the optical region,!! we obtain, after straightfor-
ward calculations, the following complete Hamil-
tonian of our system:

- (2) 3) (2) 3)
H—Hrad+Hsc+HerI+H(er 1 +Her II+H(erII
+HP oy + HE + HY + HEY, (1.13)

The contributions to (1.13) are defined as follows.
The Hamiltonian of the radiation field reads
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1
Hopq=2gliwg (E3E5+3) - (1.14) - D}, chicpr.g) (Eg+ 1y (1.17)
The self-consistent Hamiltonian of the crystal is The electron-photon interaction, which is quadratic
H, = b Q.4 CL&E gt €os (1.15) in the vector potential, consists of the following
I3 parts:
where €, is the ground-state energy of the crystal HE n*NEfaa (ga+g ") (524_ £ (1.18)

with empty conduction band, and

% k= €k~ ok H(rn— Z faa: Uuak . (cE,,_ Brd TGy - G ra))
is the energy difference between conduction-band
and valence-band levels. The interaction between Tt
the electrons and the radiation field, which is X (Eg+ £ (b + E.p) (1.19)

linear in the vector potential, consists of ’
4) _ E S L8 -
+ + H( = N faa' (’U" v C} » CR »
g,z.)1=—2ga +ﬁ§ (Ci+ﬁ_c-(i+a)-i) (£a+€-a)’ ° E,ﬁ',l?,k' K+ B2 CEodf CRo e
(1.16) )
- vk +'ﬁk+3’ Ck’k+ﬁ' Ck'k-r-'d)

X (Eg+ELg) (Eh +E.g). (1. 20)

The components of the Coulomb interaction are

H(z,_Z‘rre = (0f, bt +obp L1 vk e c
" "0 2% > - -, 2, - 3
C VOlaEE’ lql k+q&VR kG Ck+ Kk +q Kk’ +§ k +dk Kk +3Ck+ 8
g Bt Bk L L. . g 'x) L. L cem)
F2VR, @V Lk CR+qCW +ak"2vk+a:gvﬁ'k'+ack+ ap 3 Ciie) (1.21)
47e? 1 v ¥ X v i
H_=Z —_— S am b (%, Low Ony (34 o, T
c)_ 2 2 [vk+ﬁkck+3k(vk'k'+ﬁck’k“ck'+'6k"—Uf:’k'«l-'ﬁc g CReeip)

vol ﬁ,ﬁ'i"ﬁu Ial

c c I v T ¢ v¥
+ (V% 38 Clragier Clrire — Vi slr Ciooie Cloiead) Viu i Chaa] » (1.22)

y_21¢t Lore et e b o o b s Chee iz ) O
C _Vol AL 2 sree lalz [vk-ﬁak Cr.gker \ Vet o g Cieieere Cioogirrr — VRepra g Croogr g Clo oo Ciir e
k, k', k%, k

-+

v v v 1
— vbp, xChroiig (Uf . qf Chougierr Cpper — VR g Chrovpr Creneprng) Cioni] - (1.23)

Here the following notations: (1.27), and no dipole approximation is used. This
e [ 2nf \12 1 G- & fact is meaningful for plasmon-photon interactions.
S <'vol w;{) L L s (wgwg)7TZ 1I. EXCITON AND PLASMON EQUATIONS
(1.24) Before discussing the interaction problem between
Dbty Dok e d B O amiltonian, consiating of f, and the bilincar
Fif’;'z (N/vol) f;audsyuti ®Pu,p @, (1.26) Coulomb terms HE’, contains an eigenvalue problem

for excitons as well as for low-lying plasmons.
o8 = (V/vol) f daruuk( ), e (0); (.27

A. Exciton Equation

Let us neglect the virtual parts of H’ having

two creation or annihilation operators, and take
.

€ i€ap, Vih=vE, (1.28) the Hamiltonian

and time-reversal properties:

4‘[1'62 Z: Us H ’Ug: g:k 1
o e H =H +— _kﬁk__ké*_ik_ Co L2 Ot o =%
A . wx_ ) E3 £
Pt =— pik' D-(rk sk =T D; 4_5{ eryst = Hse T 07 it 15l k+dk Ok + Q0
. : v
were used, and in Hg the Fourier transform of 47 e? 8. .8 15,5

¢%/1t - T'| was introduced. The photon wave vec- +ik_l‘*|% *3 ol spaaci -
tor is not neglected in the matrix elements (1. 25)- (2.1)



4026

An exciton state is given by the following superposi-
tion of free eigenstates:

| = oz sz etz [0). (2.2)

The normalization condition reads
m?jifamaf%l, (2.3)

and we get the eigenvalue equation
(Hypyst — €0) | 8% =T | 3°%). (2.4)

Inserting (2. 2) into (2.4), and multiplying from the
left by ( OI Cior3ire» We oObtain the exciton equation

(W™ - Q,q%) Qg gt

2 ¢ ¢ Y c v ¢ vk
4re (vk+&_§:+av§'k _vgi-ﬁv'k‘e- X’ Qe w20 =0
’ - .
vol & k-k'1° 1q1° K e

(2.5)

This type of equation is known from exciton theo-
ries, and (2.5) leads to an exciton effective-mass
equation. For a further treatment of (2.5) we re-
fer to the extensive literature on exciton prob-
lems, 12+13

B. Plasmon Equations

The interband Coulomb interactions of Héz) are
responsible for low-lying plasma oscillations in
insulating crystals. To show this, we follow the
idea of Horie, !® but we need only the comparatively
simple Hamiltonian

HpHy s 27e? > (2 viai

cryst ™ -
vol ¢,

c c ]
V3 Ve >t +t
kig Vg k' +3 ww
2 ck.;chk'«‘-iﬂa

1]

rﬂ <

Qy

[ )

Uk kUk'k' e e s
+ * l-|§+ ck’k’-)qck+qk) (2.6)

In (2. 6), the intraband processes of H‘g’ have been
neglected. We look for excitation energies in de-

scribing the many-body plasmon states by the super-

position
|@7)=A"[8°), (2.7)
with
= EZ; (@i Char + Blacid) (2.8)
where [#°) is the ground state defined by'*
Al®%)=0 and H.,.|®°)=E° &%), (2.9)
and the following relation must hold:
Heoryst| @™ )=E[2%) . (2.10)

With regard to (1.9), the normalization condition
2 (Jagaz |- (2.11)
4,k

| Bizz |
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results in the commutation relation
[A,AT =1. (2.12)
A is the adjoint operator to AT, Because of (2.9) and
(2.10), the excitation energy %w® =E —E° is deter-
mined by the equation
(rw™AT - At])|e%=0.

In order that (2. 13) be fulfilled, the following equa-
tions must hold:

(2.13)

[H cryst s

4me
ﬁ(wp i-raﬁ)ak.(-q- - llqlz uai Z: Uk’mk'aﬁ +ak’
41re2 c vz c v *
g .5 VE2, 2 B, r=0 2.14a
vol ]alz k+qk T k'k‘+q Bk‘k’-cq ) ( )
2
1 X 4me cuk 2 oLgX. .
Hw™ + e,z ) B +———=2 Vib 2 V83 Biknd
vol |q] B
41Te cv X E ¢ Uk
- — =7 Vi &4 VEr 3k Ogngie = 0. (2.14b)
vol ]| Kk’

These are typical plasmon equations for insulating
crystals of the type discussed earlier by Horie. 13
Equations (2.14a) and (2. 14b) lead to the plasmon
dispersion relation

1 (F vi g | vz.8)® >:0
vollqj2 (0™ - Q,32) T n(wt s Que.3)
(2.15)
Having shown the influence of H®, giving rise to
exciton and plasmon excitations, we further note
that the Hamiltonian resulting from (2. 6) in the
case of K’ =K can be diagonalized exactly by carry-
ing out a Bogolyubov transformation, !°

III. POLARITONS IN A SIMPLIFIED CRYSTAL
MODEL

In order to investigate the interaction with the
radiation field, we collect the different parts of the
complete Hamiltonian (1. 13) in the following way:

H=Hy+H +Hy, (3.1)
where
Hy=H,4+H,, (3.2)

are the free Hamiltonians of the radiation field and
the crystal, respectively, and

_ @ @) @)
Hl“HerI +Herll +Hc

contains all the coupling terms which are bilinear
in the particle operators; also,

H(r - +H(3) H(‘i}ﬂ +H(4)

(3.3)

Hy=HePr (3.4)

are anharmonic terms of third and fourth order in
the particle operators. The interactions (3. 3) are
called linear processes, and the interactions (3. 4)
nonlineay processes.
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Simplifying our crystal model, we can show that
the eigenstates of Hy+H, are polariton states, and
the anharmonic terms H,; lead to nonlinear optical
effects. Our simplification consists in replacing

the ¢ band by a single excitation level lying over the

maximum of the valence band at k = 0, !® whereby
a reduction of sums over wave vectors results in
the following terms:

HSC=Z B gcdscoq+€o, (8. 5)
4176 vcv l'z
H®) = 2 LPos t
c = Yol s 1q] Co¢Coq
_—I—%;LIZ— (edz ci.q+co-aCoa), (3.6)
47me? V5 8* vie 2
H‘(CS)— Z),, 24 *kzlm CJL&'(CJ-a”fCod)Coi,
vol g,k 1q1
(3.7
2me Vi ovg ooz
4) +Jk'Vk ¢ t. T -
H vol E,ZEEE' Ei: Cok+aCok* CokuaCok »
(3.8)
BEr= - D3y (cda-cod €+ £, (3.9)
q
e(g)l_z gaDigicdicorg (Ea+tly), (3.10)
HP = ,,72 S vand (cdzrga+co.ara)
HA
X (Eq+EX)(E + £ 40, (3.11)
H®u=- 2 favbabacliacoia
d,d,k;3#3
X (Eg+ER)EL +E40). (3.12)

We notice that intraband processes as well as two-
photon processes belong to the nonlinearities H,.
The eigenvalue problem described by the Hamil-
tonian Hy+H, of our simplified model can be solved
exactly. The corresponding eigenstates give the
basis for a later perturbation treatment of the non-
linearities H,, . With the aid of the unitary trans-
formations

n} Ve, Ve ([}
n 4 ve. Ve \ey)

dga \/-D+ \/.D_ c(}}

do_ = ‘[D_ \[D+ Co -4 ’ (3. 13a)
£ Ve, =VC.\[n}
k)" \-ve.ve, J\ng)

cls VD, -VD.\(d};
CO-H - —\[D_ \[D+ dO-d ’ (3. 13b)

we introduce new quasiparticle operators, where
we used the following abbreviations:

- 2 o 2
_%"jﬂa)_ , c.o@umedl g4
Qo + Dga)? (R0 = Qz)?
D, =G+ Q) =@l (3.14p
402500 P.=%g oz Sog ( )
W= (w§+wi)1/2 (3.15a)
Qoq= Qg + 2009 2. (3. 15b)

The classical plasma frequency is given by
w, =(47Ne?/m vol)*/2 | (3.16a)
and A,y is defined as
Nog=4me?|ogy [2/vol|§|? . (3.16b)
It is easy to see that
C,-C.=D,-D_=1, (3.17)

and the new creation and annihilation operators ful-
fill the commutation relations

[nq, 74+ ).=0gq, [mq,mq-).= I, nd.1.=0,
(3.18a)

[doa, do'2:].=033, [dow, doge].= [dds, dig.].=0.
(3.18b)

In terms of the operators (3.13), we can write
Hy, =Hr,,‘,+1qe‘3§1=2a Hog(ning+3), (3.19)
and with respect to an energy scale where

- %% 7(Qq+2Xog)

is put equal to zero, we have

Hgpyst = Hgo+ HD =§ HQ0gdoydog+3).  (3.20)

Equations (3. 19) and (3. 20) are Hamiltonians of
harmonic oscillators with renormalized frequencies
in comparison to the frequencies of the free-radia-
tion field H,,; and the self-consistent crystal field
Hg, respectively. The frequency shift by an‘amount
of the classical plasma frequency in (3. 15a) stems
from ground-state fluctuations, and the dispersion
law is shown in Fig. 2. The difference &f - w§=

is independent of the wave vector . If we had
neglected the virtual processes of H;f.)n, charac-
terized by the operator products %3 £ and &3¢ 4,
a singularity in the dispersion law at =0 would
appear. The ground state, [xo) say, of the system
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frequency

(A)P — — ———7— —————
/
/o\
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/3
/ 9
0
FIG. 2. Dispersion law (3.15a).

with the Hamiltonian (3. 19) is defined by 731X =0
for all d, and has the form

]xo>=exp{ E €a€ }JO>M

M is a normalization factor, and |0) is the vacuum
state, i.e., £;10)=0for all 4. |X,) is, because of
the virtual processes, no longer a vacuum state with
regard to the free-photon field. The frequency
shift in (3. 20) or (3. 15b) stems from the interband
Coulomb interactions HZ. Here £3;- Q84= 224 oz
is d dependent. The eigenvalue equation of the lat-
tice functions u (%), introduced in (1.5), leads to
the relation

oy = CME=F) . Birg

! € € (h’z/Zm)(k’z—Ez)

From (3. 22), we see that A3 has no singularity at
d=0, and we can write

(3.21)

(3.22)

22040 04= w3 f5} (3.23)
with the oscillator strength
2 >y (2
2co0s®0 1P5% | (3. 24)

foz= Nmﬁ(ﬂm+hi1’/2m )2(24)?

© is the angle between d and F3%.
small d values, (3.24) reduces to the usual form

~(1/N) 2cos?0 |5§s |12/mhQy 4 (3.24")

Equation (3. 23) is a g-dependent plasmalike con-
tribution to the new frequency Qoa which takes
into account not only the Coulomb coupling between
excited electron and hole, but also the collective
behavior of electron-hole pairs with opposite wave
vectors. We remember of the f-sum rule, and see

In the case of
17
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_%3_,, Waq (frequency FIG. 3. Separation
r 2 j of the squares of the
t polariton
,_-2 Qoq (4),7 E eigenfrequencies,

> 2 °q

at once that ®3 - w§>02;- Q%;. We can say that
each “quasiphoton, ” described by the creation and
annihilation operators n and 7, is affected by the
total ground-state fluctuations, whereas each
“quasi-electron-hole pair,” described by the crea-
tion and annihilation operators d{z,dog, is affected
only by the collective motion of electron-hole pairs
with relative wave vectors q and - d.

In terms of the new quasiparticle creation and
annihilation operators (3.13), the Hamiltonian of
the linear system reads

’_ — )
H —H0+H1‘th+Hcryst+HerI ’

=§: By (nfng+3) +§ 7 0q(doydoq+3)

"Z gﬁbgva (dga‘do -a)(ﬂar'*ﬂ.a), (3.25)
q
where
ﬁ?fa = (wa ﬁoa /G)ﬁﬂoa)”zDg'é s
D=8 Dot » (3. 26)

By means of a further linear canonical transforma-
tion (3.27a) and its inverse (3.27b), we introduce
in the next step two types of polamton creatmn
and annihilation operators doq, qu and 7oz, 7o,
respectively, which are suitable in describing the
collective behavior of quasiphotons, and quasi-
electron-hole pairs in dielectric media,

b
a, ) <)

>

sl

g 2 g

i g s g

§ & ke

= £ &

P
. = w,
4 =0, ¢ /5
o / r o Fo q /e
7/ 5/ 3 /
Z V7 Lol c
N & / oq
/ 3 / 3 / .
0 ; 0 0

FIG. 4. Polariton dispersionlaw. (a) Weakly curved
valence band with 49> wp, and a resonance position at
g=F, (b) degenerate case with Eyy=Fy and qp=w, at a
resonance pos1t10n q 0, and (c) weakly curved valence
band where @3> {I 47 in the whole ¢ space.
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E : Tlé In (3.27a) and (8.27b), we have used the notation
/———ﬁ\
o 1o *© - o N - o~ ~
g K o B Xoi=-X3.m - ot (Gl @)y
0q 0-a IDg%1 880z Wyz ’
T (3.28)
Y "=—Y* . D%g (ﬁoa[WoE_(ﬁgE'~m>uz
00 TR\ T e W '
(3.29)
1 (Wo+ (@35 -39 V2
.= *-’.: - 04 0 q
ZUq Z(]q Zo-q 2( ZWDE > ) (3 30)

Vi(@g/Fop)' 2 — Xiy(Fog/ 03)'
2Z,4(B)'R
2Zy3(B)' "2

+433800:[(2g3/m)| DG W20,  (3.31)

— Yh(@g/Fog) ' - Xig(Fog/ @)

[~4 2 -._.' -.z
A, = (2034'_9_05_)_ A :_____._____(qu 90'1) , (3.32)

In addition, we note the relations

3 ;?u 4By Yo o
3 8 (Gn+Fyz)? G Frn)?
¥ & L= Litfed) g _ @g-Foq) (3.33)
5 % s e 40;Fy; T 4@gFog ’
g ¥ 4 4
T s 8 x Eoz=[5(H2+a%)+Wyq/2 |2
¢ S ¥ % 0i=[z(Qog+®z)+ Woq/2 %, (3. 34a)
% ® N N o
& 5 o Fo3=[3@8 + %) - wez/2]V2 . (3. 34b)
)

(=]
& &

Egg+ Fog= 53+ 0%, Egg—Fag=Woz, (3.35)

Q g Zga - XOE Y(;)% = % ) (3. 36)
25 £ A,-A=B,-B.=1 . (3.37)
5
> .c'}g It is easy to see now that the transformation (3. 27)
o N ‘% = is unitary, and it leaves us with the following com-
a4 ><? >ﬁ mutation relations of the polariton-creation and
X S ) e polariton-annihilation operators:
(-SR-S N A JUR
N Y & F [dog, Az .= [Mogs Moe).= 033
% (3.38)
T A A At ~” ap A
E?'g :g (dog, doge]. = [dig, doi ). = [Mogs oz ). =[5, gz )= 0 .
> PO
: The operators dga, dyz commute with the operators
s 2 ﬁga, ﬁoa- In the polariton representation, the Ham-
S iltonian (3. 25) gets the very simple form of two sets
& Sg of decoupled oscillators, namely,
& N ot A
N ,gf .E};g H,= Za hEOﬁ(aga doa+ ‘;‘)+ Za hFOa(nga T’Di+ %) . (3. 39)
< (=]
NN bf The polariton dispersion law has two independent
:?q 3'% g < branches belonging to the eigenfrequencies Ey; and
N N R B Fo3 The separation of the squares of the frequen-
N o e G . c oy > . . .
Q S cies for special q values is shown in Fig. 3. In order
h']g 5° to discuss the polariton dispersion law, let us ex-
S ;é’ pand the expressions (3. 34a) and (3. 34b) for the
\~__>l_—'/ following different additional assumptions: (a) As
. long as in a certain range of d values Qgq)@3, and
= T o (B33 - 33)*>403 Sodl (223/1) | D3E| P (3.40)
-0 o 4—:

=35 =@ = then (3: 31) reads approximately
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~ - g/ DI T
Woa“(ﬂga-wa)+2wa[(g/~)l sl
0d

so that the polariton eigenfrequencies become

Bg [(2g3/7) DG F

(3.41)

Eog ~ Qg+ = L , (3.42a)
Qog 20
e 12
Fyg=@z— _____[ (Zga/h') 1 Dg | ] . (3.42b)

Zﬁoﬁ

Hence, in this region the following inequalities are
satisfied:
(3.43)

(3.44)

Eog>S05> 5> Fog »
@y = Fog > Eog = $loa -

(o) For a special d value, =K, say, let the reso-
nance condition &j = foz, be fulfilled. Then we have

(Woio)res: 4§0 io QOIEO s (3. 45)
where
Oy = i, /M| D3y, | - (3.46)
The polariton eigenfrequencies now are
EUE0= (ﬁg;0+ 28, EOQOIEO)I/Z zﬁoio*“ ﬁo';o , (3.47a)

~ = = 4 7
Foz = (@53 — 29 ;095;0)1/2 ~Qoz,~ o, » (3.470)
and we find in the resonance case
Eg, >, 7,=0%,>Foi, - (3.48)
(c) As long as in a certain range of d values Qoa< W
and

(@5 — B50)® >453 gl (225/7) | D3| P (3. 40)
then (3. 31) reads approximately
- - 50U 272
Wag = (@4~ B39 + 203, L2/ M Dog 7T . (3. 49)

By
so that the polariton eigenfrequencies in this case
become

Eg®~ a;q+<%05> Bﬂggz__ﬁ"aé_}z ,  (3.50a)
Fog =gz - ____[(2g§g:)mgg F (3. 50b)
and we have the following inequalities:
Eg3>®3>S0 5> For » (3.51)
Qoq-Foy>Eog— Bz - (3.52)

Our discussion gives rise to different dispersion
laws depending on specified crystal data. Some
possibilities are shown qualitatively in Fig. 4 as-
suming that the q dependence of ﬁo g and @y is
known.

Normally, the two branches Eg; and Fyz in §

MANFRED LANG 2

space have no point of contact so that Ey3>Fy; holds
continuously for the same § value. But as it is
shown in Fig. 4(b), a possible pathological case
exists, when at =0 we have Eyy=Fy, This situa-
tion takes place if

lim| (g3/7)| D&g| 1=0
and if further 3 =w,. By neglecting the terms
H?), and H®’ in the Hamiltonian (3.25), some
changes in the polariton frequencies result. Instead
of the quasi-photon and quasi-electron-hole-pair
frequencies @z and Qoa, respectively, the free fre-
quencies w; and Qy; occur, whereas the Hamilton-
ian retains its character (3.25), but written now
with photon and electron-hole-pair operators. A
change of energy scale, putting

1
€0= 3 2qh g

equal to zero, would be appropriate. Treating this
system in the same way as it was done in previous
sections, the resulting polariton frequencies would
be instead of (3.34)

Eog={ 3[(Q8;+ 0} + Wyg]12,

Fog={ 3[(Q8z+ 0} - We]}/?
where now (3. 31) is replaced by

Wz = {(Q%; — w3+ 4wy Qogl (2g5/7) | DEE| P12 >0
(3.54)

The two branches of the dispersion law (3. 53), which
are shown in Fig. 5, have both excitonlike and
photonlike regions. In the case of Qy;>wz, we have
wg—Fo3>Ey;— Qg whereas in the opposite case
Qpz<wgz, we have Qyz— Fo3>Eqg— wg. This asym-
metry is due to the virtual terms

as a"o )

(38.53a)
(3. 53b)

cv T &1 c
23 83D§%costd and 23 25 D5%eo ik

present in H2), A further consequence of such
virtual processes is the fact that the polariton
ground state, |®, say, is different from the free
vacuum | 0).

Let us return to our system (3.25). In order to
get an additional information on the polariton be-
havior, we look for expectation values of the cur-
rent operator which is defined as

J=(e/m) [ Er ¥ @F)B- (e/c)EI¥E) . (3.55)

Inserting (1.2) and (1.4) into (3.55), switching to the
electron-hole-pair description, and reducing the
resulting expression to the simplified crystal model
of interest in this section leads to

J=3®. 3. 3% (3.56)
where
J&=-e 2 Telien » (3.57)
q
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F®-_¢ Za:gaﬁavf,'g(c;fr co)Ed+ €y,  (3.58)
JP=e ?; Efiviaicli Covalba+ &5 (3.59)

In (3.57), the electron velocity is given by

= (1/M)Vie,; . (3.60)

We have neglected the nonlinear parts H, of the
total Hamiltonian in the present discussion; for that
reason, it is consistent to regard only the bilinear
terms of the current operator, i.e., the contrjbu-
tions 5% and ). The polarization current J®
has no dlagonal elements in the electron-hole-pair
description, whereas in the polariton representation
it has diagonal as well as nondiagonal elements
with respect to polariton eigenstates. The diagonal
terms show that there exists a real polarizability

of our medium. After having transformed (3. 57)
and (3. 58) into the polariton representation with

the aid of (3.27), we see at once that, as we have
expected, there exists no ground-state current.

The polariton ground state, which is different from
the vacuum state 10), is denoted by |®,), and we
find

(BT 8= (.| T | 8=0 ,  (3.61)

In the excited one-polariton states d0~l &) and
7706' ®,), respectively, we get the expectation values

(@] dgg T&d%| @)

Wog+ (R34 - é)

==eV{ -F@) ,  (3.62a)
2Woq
<‘b0| ﬁOQ noq| o)
>
5
3
g fog
photonlike
excn‘con~
Qog s
[
Qoo 7"/ ——="" excitonlike
&/
o/
G// : photonlike
| q
|
0 k

FIG. 5. Polarition dispersion law where H{®);; and

H(g) areneglected. The wave vector azﬁ refers to a re-
sonance position.
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> (Qo %) (-
evs i~ W ={J©) .
G zwoq (I7@» (3. 62b)

With respect to (3.60), we have
FO-D=-F@

and
FO-Dy=-FO@)

so that further

Z E0@ =2 G-@n=o .

In the resonance case, at ﬁ:l; say, (3.62) reduces
to

T o= T €D pes= 2eTE .

A much more remarkable result is the agreement
of the expectation values of the polarization current
J® in the two energetlcally different polariton
states Elo |®,) and n0~| o),

CHF AN ANE W
=<(I>0]’F700 anI¢>

_ egq <?gq Dcv* cvq 283 Dcv cv*) <3p(a)>
" n ﬁ

Wo

q

(3.63)

Because of (3.63), we can say that the polariton
states d31®,) and 731 ®,), which belong to different
energies, are slates of equal polarizability.

IV. TRANSITION AMPLITUDES OF SOME
NONLINEAR EFFECTS

We have shown that — in agreement with Hop-
field® — the propagation of radiation in the medium
is best described by polariton waves. Our model
of Sec. III predicts two polariton levels with the
energies 7F,; and ZE,;, respectively, and con-
sequently, we have two optical refractive indices

1) = wi/F =203 /[ (R 4+ 32 - Wp3] ,  (4.1a)
()%= wi/E% 4= 203 /[((R 3+ 3D+ Wpg),  (4.1b)

where « denotes the lower, and B the higher polar-
iton level.!® In the frequency range larger than
Eq,, the possibility arises that for two different
wave vectors k and k', say, the frequencies E,3
and F,3 coincide. This situation is illustrated in
Fig. 6.

If highly intense electromagnetic fields, as they
are available from lasers, interact with the crys-
tal, the anharmonic terms should no longer be ne-
glected. Because of the interaction H , polaritons
of different wave vectors are coupled, and H,,, for
instance, causes transitions between the polariton
levels @ and B. Treating the nonlinearities
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FIG, 6. Representation of the polariton levels a and B.

Hm—H(3)+H(“ 4.2)
with

HP=HE + H o+ H 4.3)
and

D =g® ., g, (4.4)

in the polariton representation (3. 27) as a perturba-
tion, we get in first-order perturbation-theory non-
linear effects of third and fourth!® order. A third-
order effect, for instance, is the fusion of two po-

(Vg =D, (v, - %1% |H‘3’|0;N£‘1,N£‘2)=-5

is,-(il-l-.l.{z
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laritons whereby a new one arises, and an example
of a fourth-order process is the annihilation of
three initially present polaritons whereby a new one
is created. We do not give here a complete analy-
sis of all possible nonlinear transitions which could
be obtained for our model in first-order perturba-
tion theory, though this would easily be possible
within the proposed frame, but we conclude the pre-
sent investigations with the results for third- and
fourth-order transition amplitudes for processes
where by polariton fusion a sum frequency, a se-
cond- and a third-harmonic polariton oscillation,
respectively, arises.

A. Generation of Sum Frequency by Two-Polariton Fusion

A multiple occupation of polariton states in our
system is possible, and we consider the case where
at time #,=0 two polariton states with wave vectors
k1 and kz, frequenc1es Fyi ) and F,; , and occupation
numbers Ni and N-2 on the level a are excited,
while the level 8 is empty. The normalized state
describing this situation is denoted by IO'N{"I,N“)
Under the 1nf1uence of H,,, occasionally a polarlton
k1 and a polariton kz on the level ¢ is annihilated,
and a new one on the level g with the frequency
Ey; =Fyy +F £ is created. In first-order pertur-
bation theory the transition amplitude for this pro-
cess is given by
(Vg = 1), (Vg - 1)% 13, |H
Transforming HS into the polariton representation,
and paying attention to the time-reversal properties
of Sec. I, we find

Plo;Ng, N, - (4.5)

cvx
27e? 'Dy% & DO ;2

)(NialNg;)l/z
vol IDSUT& | ngiz

» 52 - ~ 12(ts (52 — 32 )\1/2 P 52. - _ =2 . \1/2
y Woi, — (2% K wgl) Wk, (% i, (I)fz) Wo i, vy + (271 R ok, “"k1+k2)
2Woi, 2Woi, 2Wo i, +k,
cy X - DT WO a o o+ \1/2 02+ 32. - 1/2
% Svo k szka+k1 2 k Fy K 2 i,Fo kZQO k1+k2E0 ky +ky + % k,$% K +k,
z 2. 5%, - TF -0 - F.: -
( |k1 | Qo ky go kZQO ky+ky Qo kzFO kZQO k1+k2E0 ky +ky
cy vk 1/2 e T e ) . e e \1/2 1/2
+ % iy Uk K, Ky Qok ky Fo, 2o, Fo i S% k1+k2E0 ky +k, & leo k +k
2 -2, 32. &%, - - ra—
I, | S, Qi ok, Qi Fo ¥, Q0 &+, ok +ky
cox_ wv - 52, 52 1/2
Vot 4i.0-i 3 [P0t Eoi Qi Foi i For \2 Q2; Q%
Oklfka klkz 0:{;+k2 Okl#kz 0k1 Ok Okz Ukz Okl Okz ’ (4,6)
I+ 1%\ 3 i ok, & K A 0F, o Fox ot Fox,

((N;z— 1)¢, (N;1 -

o
1% 18 |HEL 0N, NE) = 01, -3, 5 (VENE )2
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CUx . (32 ~2 \\1/2 . s2.  ~3,\12 e (B2 - _ <2 L\1/2
Dy K, Woi, %% i ‘0’1) Wo P (% Ky~ ’Uiz) W, ky+k, T (<% kyvky (*’k1+k2)

X<gk Dk +kk2 . -
2 | DY K, ! 2%i1 2", 2W0k1+k2

1/2 cvk
0k

cv
lDoill

SN2 (S e . e . \1/2 s R Q2 s
wkl 90k290k1+k2E0k1+k2 / . QOkzFOkZQOklﬂ(z

v
X k,

—1 _ + gDy .k
Fog, Q01,Fo RZQ% &, iy % 1,5 &y, Pok oy 2 htiehy

1/2 ~2 ) 1/2

52

Woi i+ Q1.0 ~ 0% .1

0% +k, ( 0 &y +ky T Yk ok,
: 2Whi 2Wyt .
2Woi, 0ky 0 ky +k,

e (62 — N2 W+ (e -G
WOkl_(ﬂokl_wkl) W““z+m°"z wkz)

X

1/2 G2 - - + \1/2 1/2
Wi, Q5 Q Eqt
0 k1 0 k1 +k2 0 1{14-1(z

2
o Fo= Q - -
% Qo Fok, 0k, +k,

+

\F - z, - 2.0 -~ + . v -
Fog, Q3 Foi, 207 44, 0%,k i, Eok +,

2
ko u¥ — (B2 _ s23y\1/2 _ o \1/2
v,y Do leo kzD() K, +k, Wo k (A kg wkl) @5 K~ kz)

IDORII [DOkzl lDOkl*ﬁzl ZWOII ZWOkZ

. . 0% . - _ =2 Ly\1/2 .. \el/62-0 -7 - \ 172 1/2 ?
Wy ky +ky (% ky+k, T {UT(1+k2) W, +ky Q0 kIQO kzFO k, 2 leO le?, 0 ky -
. - - -~ F.* 02 - - 4.7
2Woik, +k, Eog, s, ok Fox, S, A i QoiFot, 8 @.7)

and
B cvXk W,z +(ﬁz" —(:’g) /2
(Ng, =1)%, Vg, - 1)%; 15| B, | 0; N, N%2>=6;3,-<;1+;2>(N§1N%‘2)1’2[Zfilzzvozl+;2 thW:k1 .
Oky

1/2 1/2

B2. 32 W e (R e 2 vz [ . e e B e

y Wog, + (255, — Oy,) Woiy+int (% 20k, = e ) [ Wi Wi, Qo3 +i Boiyein
. P s P 202x

2W0k2 2W0k1+kg FOleOkngkl*Ez

0E1(D0f1+kz+ D0k1+k2) Wofq_ - (égfq _(:)!3(1) ve
1D, | ’DOk1+kzl 2Wy i,

- - - cy,
_fkakg-!-kl Voky

- 82. _ 5 1/2 - 52w 1/2 - .y e » Y12
x W0k2+(90k2‘w§a) W0k1+k2‘(90k1+k3 w%j_-l-kz) QOleDklwkzwk1+k2

- 2 -
2W0 ko 2W0'1'q+kz QnilFoﬁon k1 +kp

- (D2~ ~2 y\1/2
DOkg(DO Fi+k +Do k1 +kg) W k1+(90 Ky~ wkl)

2W, i

fk1+k2k11)okg
lDUﬁz ! [Df’ksz!

& ~2 - 52 » 3 W - .y
Woﬁa~(9§ia—w§2) vz Woiyrka"(ﬂo k1 +kg wkl*kz) 12 wkaDﬁIFO koW kit 1/2] (4 8)

- " - 522 Fos s
2Woi, 2Wo i, +ke Foiy Qi Eoipt,

The transition probability essentially depends on the occupation numbers initially _Pre§enfl and the created
polariton with the frequency Eyj,=Fy, +Fo ¢, must in addition fulfill the condition k; +k, +k;=0. This wave-
vector condition, of course, refers to polaritons, and not to single photons. The mteractmn Hamiltonian
Hy &) even causes transitions which take place only on a single polariton level. A polariton k3 with the fre-
quency Fog,=Fog, +Fog,, which, for instance, arises while two polaritons (kys Fyz,) and (Ky; Fy 1) on the
same level are annihilated, has to obey the condition k1 +kz k3— 0.

B. Generation of a Second-Harmonic Polariton

We consider the case where initially N ‘,’;‘1 polaritons (-121; F, 1;1) are excited on the level @. The transition
amplitude
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(Ng, - 2% 18| HP |05 NE,)
for the case of a second-harmonic polariton generation (kz, Eyg, ) on the level B during the annihilation of
two polaritons (k;; F, ;,) consists of
1)o]ve Wez(Dcﬁ‘:r )? W, K~ (&% [ ‘7)'2121)

<(Nk1 - 2)“; lial Hés) ‘ O; N‘k‘]) = 5kz,-2k1 [N:I(Nkl -

CcY, |2 -
VolIDRE, B 2Woy,
ve( co¥ vy vz/ 2
=0 ~2 Voak, V. § Qo2 Eogap Q0% 2 For
Woot, + (25, -3 %) 02k, Uk, &y [Qoek, Eoak, 0%, Dok, Fox,
" z 7. - =7
2Wo 23, 41k, | §5 21, i, Foiy Qox,
co, v 82 .. 1/2 . Fo E
Vo kaZk 02k, 90k1 0k Qozk1 ozx:l
-2 + = (4.9)
2 - - 52 - Z - ’ .
Ik, | Qo2i, Eooi, 202k, £20 2k, S
/
c v X ~ ~ . \1/2
g—D» -.g.-D-w. W"+ﬂ Do
(3, - 2% 18| B [0; N§,) =03, o5, [NE, (N, — 1) 429 — R 2585 Dory @ (Woa, + (i, - 9ai)
1 - 1 - p
! 1 Wi, 2Wy i,
B2 . vz 2. " L\ ve cu ¥ \2
[ Soak, 901:1 Qozxleoak1 ngID-kl kIDOZkl(DOkl )
X
- - - - N 2
Qo2it, Eok, Qof, Foit, \  Qoai 41Dg5z, 1 1DGE, |
(B2, — G2 . (B2 . _S2.\1/2 . \ve .
3 (QOkl_wkl) WOZkl_(QOZkI_kal) Wz, 901‘1 0, Foi,
X X -—
2Woi, 2Wo2i, Eqai, Qo Foiy 575;1 ’ (4.10)
and
. o, 18 (3) CNE NS e ¢ . 1) V2
((Ng, - 2)%; lkalHerII 0; N§, )= 0%, 1, [N§, (N - 1) ]
. (B2 _ 32 " 2 W _ 22 \V2 . vz
s ok Woi, + (Q0i, - @%) [ Wook, +(Qozk1 - %) Wiy [Qoox, Eozx,
x fa 3 v ——.—t
1§, Voziy S p " 7 .
2 1 2Woi, 2Wo 2k, Fog,\ So2i
e (B2 _52a\2 [y e \ V2
8k Dw DEe wi, [Wooi, — (@31, - &%) Wk
—4fo 08 L - L ! : (4.11)
2k &, V0% " - . .
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The second-harmonic polariton with the frequency Eyj i, = =2F,g, has to obey the wave-vector condition

kz +2k1— 0. On the other hand, a second-harmonic polariton (ky; F“ = 2F0 1(1) arising during a fusion pro-
cess which takes place only on the level @, should satisfy the cond1t1on kz - Zk1 =0. Remembering the trans-
formation (3. 27), we know how photons of wave vector kz— i2k1 contribute to a second-harmonic polariton.

C. Generation of Third-Harmonic Polariton

As an example of a fourth-order effect we evaluate the transition amplitude for the generation of a third-

harmonic polariton (Ky; Eyg,=3Fy3,) on the level § during the annihilation of three polaritons (kl, Fy3,) on
4
and we

the level a. In first-order perturbation theory this transition is caused by the interaction H 5,

obtain

" .18 . -
((Ng, =305 15, [H 05 N§ ) =05, oz, [N (Ng, - 1)* (Vg - 1)*]/?

cu *y3 . &2 2\ v . (82 ~ 2 V2
e’ ”klak Uak1-3k1(D0k1 P [Wog, - (R0g, —wi)) Wosg, + (Qoax?1 -3g,)
PR " p
8vollik, 12 1D} A 2Wo3, 2Wo sk,
£ Fo,Q0si, Bost e 2, 82 . vzl/ &2
y i 0k1903k1E03k1 0oz, Q01 0%, Qox Fox (4.12)
= + - —
N 7
9 03k1 Q0% Foi, Qo 5%, Lo sk, Qox, Foxy 0%,
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and
((Ng, - 3)%; 12 [H S 105 N§, ) =8¢, i, [N § (N, - 1)*(g -2)* ]2
, 1/2 -y ~p 1/2
1’3k1k1Dok1 WDk1+(ﬂok —wE) Woi, — mox _wkl) Wosil"'(ﬂosil'wsil) Wy
X
Ve BIDFT T 2o, 2Wor, 2Woss, Fox,
~ -~ Cv cv¥y2 O
Qoi, Foz,si, Fosi, |2 ﬂzoilﬂgsil 2 it -kxle”“ Dox,)* Woi, = (@55, - &%)
X = + +J 3k &, - v, |2
Qﬁ;lﬁﬁsgl QoilFoi1 903i1E03i1 11 ZIDcogkll IDUHl 2W°k1
5 e (82w _02e \Y2 e e \1/2/ 3
X Woi, + (@, _w“l) Ui Wosk, = @Gk, - &35)\ [ @, 0, ais, fot, Foiy ( (4.13)
2Woi, 2Wo sk, ok Eosky) \Qoi, Foi, Qi S

In this case, the wave-vector condition Ez + 3'1::1 =0
is necessary in order to allow the transition men-
tioned. A third-harmonic generation of a polariton
(Ky; Foz = 3F0k1) which includes only the level a,
can happen if kz - 3k1 =0.

The examples reported show that nonlinear pro-
cesses imply simultaneously a frequency as well
as a wave-vector condition; hence, only certain
wave vectors for special polariton transitions come
into consideration. With respect to our model,
these § values essentially depend on the curvature
of the polariton levels, and of their separation in
4 space.

V. CONCLUSION

Starting with an electron-hole-pair model of in-
teracting radiation and solid matter, we have de-
scribed quantum mechanically collective effects
in insulating crystals. Our considerations are re-
stricted to excitons, plasmons, and polaritons.
Plasmon-photon coupling in the crystal arises if
we do not neglect the photon wave vector in com-
parison to the electron wave vector. A simplified,
but exactly solvable model, which leads to two
optical refractive indices, is used to derive the
polariton-dispersion curves. Polaritons, in this
paper, are described as coupled oscillations of
photons and electron-hole pairs. A perturbation

treatment of nonlinear optical transitions including
Coulomb forces may show the advantage of polariton
states in nonlinear optics.

The generalization of our simplified polariton
model, and the coupling of the system to phonons
shall be subject of further research. To take into
consideration the interaction with lattice vibrations
is recommended by the existence of photon-plasmon
coupling. Strong electron-phonon interactions are
important for near-resonance effects in solids. An
increase of scattering efficiencies for TO and LO
phonons was observed in resonant Raman scattering
experiments on semiconductors and insulators with
exciting laser energies near that of an absorption
edge. 2% It was pointed out in recent publica-
tions?* 2% that polaritons should be used as the true
electromagnetic modes of the crystal in the theory
of Raman scattering. Similarly, the plasmon-
photon coupling was observed in semiconductors,
and intensively studied on a polariton basis. 28
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Electron Mobility in II-VI Semiconductors

D. L. Rode
Bell Telephone Labovatorvies, Murray Hill, New Jersey 07974
(Received 17 June 1970)

The electron drift mobility in CdS, CdSe, CdTe, ZnS, ZnSe, and ZnTe is calculated by an
iterative solution of the Boltzmann equation for lattice scattering. Piezoelectric, deforma-
tion-potential acoustic-mode, and polar-mode scattering are included. The acoustic deforma-
tion potential appropriate to acoustic-mode scattering appears to be much higher than previ-

ously expected.

1. INTRODUCTION el described below. The wurtzitelike and zinc-

The electron mobility in II-VI compound semicon-  blende-like crystals CdS, CdSe, CdTe, ZnS, ZnSe,

ductors can be understood by a consideration of the and ZnTe, being wide-gap semiconductors, are
scattering of conduction electrons by fundamental especially well suited to calculation and are the only
lattice vibrations.! Although impurity scattering®® materials discussed here. The direct-gap III-V

is also well known, this mechanism does not contri-  semiconductors have been discussed previously. ®
bute to the lattice mobility. Its effect in commonly There are five main conclusions evident from the
pure materials is negligible at temperatures above present work. First, the three scattering mecha-
~100 °K. The theory of electron scattering by lat- nisms discussed by several authors!*®'®are sufficient
tice vibrations*® is exceptionally accurate for iso- to predict the lattice mobility, i.e., polar-mode
tropic direct-gap materials because of our knowl- scattering, 5 acoustic mode via deformation-potential
edge of the conduction-band structure.® By an iter-  coupling, ' and acoustic mode via piezoelectric

ative solution of the Boltzmann equation, ”® the elec-  coupling.'® Second, Matthiessen’s rule'® (reciprocal
tron mobility follows exactly from the assumed mod- mobility is the sum of reciprocal component mobili-



